{{ 'fb_in_app_browser_popup.desc' | translate }} {{ 'fb_in_app_browser_popup.copy_link' | translate }}

{{ 'in_app_browser_popup.desc' | translate }}

MENU CART {{currentCart.getItemCount()}}
[Video Course] Machine Learning Specialization by Andrew Ng, DeepLearning.AI

[Video Course] Machine Learning Specialization by Andrew Ng, DeepLearning.AI

RM30.00
{{shoplineProductReview.avg_score}} {{'product.product_review.stars' | translate}} | {{shoplineProductReview.total}} {{'product.product_review.reviews' | translate}}
{{amazonProductReview.avg_rating}} {{'product.product_review.stars' | translate}} | {{amazonProductReview.total_comment_count}} {{'product.product_review.reviews' | translate}}
Quantity Product set quantity
Add to Wishlist
The maximum quantity per submit is 99999
This quantity is invalid, please enter a valid quantity.
Sold Out

Not enough stock.
Your item was not added to your cart.

Not enough stock.
Please adjust your quantity.

{{'products.quick_cart.out_of_number_hint'| translate}}

{{'product.preorder_limit.hint'| translate}}

Limit {{ product.max_order_quantity }} per order.

Only {{ quantityOfStock }} item(s) left.

Please message the shop owner for order details.
Add to Wishlist

Description

#BreakIntoAI with Machine Learning Specialization. Master fundamental AI concepts and develop practical machine learning skills in the beginner-friendly, 3-course program by AI visionary Andrew Ng

WHAT YOU WILL LEARN
Build ML models with NumPy & scikit-learn, build & train supervised models for prediction & binary classification tasks (linear, logistic regression)

Build & train a neural network with TensorFlow to perform multi-class classification, & build & use decision trees & tree ensemble methods

Apply best practices for ML development & use unsupervised learning techniques for unsupervised learning including clustering & anomaly detection

Build recommender systems with a collaborative filtering approach & a content-based deep learning method & build a deep reinforcement learning model

SKILLS YOU WILL GAIN
Decision Trees
Artificial Neural Network
Logistic Regression
Recommender Systems
Linear Regression
Regularization to Avoid Overfitting
Gradient Descent
Supervised Learning
Logistic Regression for Classification
Xgboost
Tensorflow
Tree Ensembles

About this Specialization
573,350 recent views
The Machine Learning Specialization is a foundational online program created in collaboration between DeepLearning.AI and Stanford Online. This beginner-friendly program will teach you the fundamentals of machine learning and how to use these techniques to build real-world AI applications.

This Specialization is taught by Andrew Ng, an AI visionary who has led critical research at Stanford University and groundbreaking work at Google Brain, Baidu, and Landing.AI to advance the AI field.

This 3-course Specialization is an updated version of Andrew’s pioneering Machine Learning course, rated 4.9 out of 5 and taken by over 4.8 million learners since it launched in 2012.

It provides a broad introduction to modern machine learning, including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), and some of the best practices used in Silicon Valley for artificial intelligence and machine learning innovation (evaluating and tuning models, taking a data-centric approach to improving performance, and more.)

By the end of this Specialization, you will have mastered key concepts and gained the practical know-how to quickly and powerfully apply machine learning to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, the new Machine Learning Specialization is the best place to start.

Applied Learning Project
By the end of this Specialization, you will be ready to

• Build machine learning models in Python using popular machine learning libraries NumPy and scikit-learn.

• Build and train supervised machine learning models for prediction and binary classification tasks, including linear regression and logistic regression.

• Build and train a neural network with TensorFlow to perform multi-class classification.

• Apply best practices for machine learning development so that your models generalize to data and tasks in the real world.

• Build and use decision trees and tree ensemble methods, including random forests and boosted trees.

• Use unsupervised learning techniques for unsupervised learning: including clustering and anomaly detection.

• Build recommender systems with a collaborative filtering approach and a content-based deep learning method.

• Build a deep reinforcement learning model.

💢💢💢💢💢💢💢💢

Product Details: https://tinyurl.com/mscu6474

File size: 3.7GB

Payment and delivery:
1. Please provide your EMAIL address in “message:” during checkout.
2. The files will be sent to you after payment has been confirmed.

🔥 All files will be delivered online.
🔥 Download for Lifetime Access

Kindly PM us if you are looking for other ebooks/ Video Courses.
Enjoy learning!

Customer Reviews


{{'product.product_review.no_review' | translate}}

Related Products